Just-identified versus overidentified two-level hierarchical linear models with missing data.

نویسندگان

  • Yongyun Shin
  • Stephen W Raudenbush
چکیده

The development of model-based methods for incomplete data has been a seminal contribution to statistical practice. Under the assumption of ignorable missingness, one estimates the joint distribution of the complete data for thetainTheta from the incomplete or observed data y(obs). Many interesting models involve one-to-one transformations of theta. For example, with y(i) approximately N(mu, Sigma) for i= 1, ... , n and theta= (mu, Sigma), an ordinary least squares (OLS) regression model is a one-to-one transformation of theta. Inferences based on such a transformation are equivalent to inferences based on OLS using data multiply imputed from f(y(mis) | y(obs), theta) for missing y(mis). Thus, identification of theta from y(obs) is equivalent to identification of the regression model. In this article, we consider a model for two-level data with continuous outcomes where the observations within each cluster are dependent. The parameters of the hierarchical linear model (HLM) of interest, however, lie in a subspace of Theta in general. This identification of the joint distribution overidentifies the HLM. We show how to characterize the joint distribution so that its parameters are a one-to-one transformation of the parameters of the HLM. This leads to efficient estimation of the HLM from incomplete data using either the transformation method or the method of multiple imputation. The approach allows outcomes and covariates to be missing at either of the two levels, and the HLM of interest can involve the regression of any subset of variables on a disjoint subset of variables conceived as covariates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust inference for the Two-Sample 2SLS estimator☆

The Two-Sample Two-Stage Least Squares (TS2SLS) data combination estimator is a popular estimator for the parameters in linear models when not all variables are observed jointly in one single data set. Although the limiting normal distribution has been established, the asymptotic variance formula has only been stated explicitly in the literature for the case of conditional homoskedasticity. By ...

متن کامل

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

استفاده از داده‌های اقلیمی جهانی برای بازسازی خلأهای آماری داده‌های دما و بارش (مطالعۀ موردی: ایستگاه‌های حوزۀ آبخیز خانمیرزا)

Introduction: Due to importance of data quality, issues relating to filling the missing data has found a great deal of interest. Regeneration methods for missing data can be classified into two kinds of classical and modern categories. Application of statistical methods such as relationship with nearby stations and approaches on the base of hydrological, climatological or physiographical simila...

متن کامل

Comparing Three Regression Models for Reconstructing Groundwater Level Data (A Case Study)

The base for hydrology studies is accurate data. However, the gaps and shortage of sufficient data exist n the most hydrology data such as  underground water data as the most important and cheapest water source,  lack of  data  take places due to various reasons such as Inability to measure and faille to register statistics. Missing data or incorrect statistics, Therefore, estimating the missin...

متن کامل

Developing a Macro-segmentation Model at Industry Level: Iranian Banking Industry

Drastic changes and turbulence in macro-economic factors have the greatest impact on banks target market attractiveness in Iran. It is assumed that conventional segmentation models at the corporate level are not efficient for banking system. This study aims to develop a new segmentation model at the industry level for banks of Iran. For this purpose, structures and variables at the industry lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 63 4  شماره 

صفحات  -

تاریخ انتشار 2007